
1

CSC 128
TOPIC 3: SELECTION CONTROL

STRUCTURE

By : MOHD SAIFULNIZAM ABU BAKAR

2

COURSE
OUTLINE

At the end of this chapter, you should be
able to:

• Interpret the concept of relational and
logical operators.

• Differentiate between three types of
selection.

• Produce programs using selection control.

• Introduce the nested if problem, explain
the output based on the various inputs
from the user.

• Solve a problem using multiway selection.

3

BOOLEAN EXPRESSION

• A Boolean expression is an expression that produces the result TRUE

(non-zero value) or FALSE (0).

• The computer will make decisions based on the Boolean expression.

• An example of a Boolean expression is a < b.

• The condition of a is tested against the condition of b. If a is in fact less

than b, the test result is true.

• However, if the value of a is greater than the value of b, the test is false.

• The relational operator and/or logical operator is used to test the

condition within a program.

• The value zero (0) is considered to be false by C++. Any positive or

negative value is considered to be true. C++ evaluates any non-zero

value to be true.

4

RELATIONAL OPERATORS

• In order to evaluate a comparison between two expressions, we can

use the Relational operators.

• As specified by the ANSI-C++ standard, the result of a relational

operation is a Boolean value that can only be true or false, according

to the result of the comparison.

• Relational operators allow two quantities to be compared. Normally,

when the expressions have two operands or identifiers, either similar

or dissimilar, smaller than or bigger than.

5

RELATIONAL OPERATORS

• The six common relational operators available in C++ are listed

in the table below.

Relational Operator Meaning Example

= = Equal respond = = ‘y’

!= Not Equal to result != 6.5

< Less than count<10

<= Less than or equal to Count<=10

> Greater than average > 155.5

>= Greater than or equal to average >=155.5

6

RELATIONAL OPERATORS

• The relational operator can be used to compare between integer, character,

double, float or string data types.

• If mixed data types are compared, for example integer data type compared with

double data type, the computer will convert the number into double first, then it

will compare the numbers and produce the value either true or false.

7

RELATIONAL OPERATORS

#include <iostream>

using namespace std;

int main()

{

cout<<(20-8==6)<<endl; //12==6 FALSE 0

cout<<(40 > 50)<<endl; //40>50 FALSE 0

cout<<(15.5 >= 15.5)<<endl; // TRUE 1

cout<<(12 + 8 < 20)<<endl; //20<20 FALSE 0

cout<<(4*10%2-5 <= 25/5+3)<<endl; //-5<=8 1

return 0;

}

8

RELATIONAL OPERATORS

• We can also compare the numbers using variables. Example 3.3 shows

examples of using variables of integer and double data types.

Example 3.3 : Suppose that int x=7, y=6, z=3 ; double i = 3.25, j= 5.6;

Boolean Expression Results

(x == 7) would return true.

(y*z >= x) would return true since (6*3 >= 7)

(x+3 > y*z) would return false since (7+3 > 6*3)

((y=7) == x) would return true. ((7==7))

i < = j would return true (3.25<=5.6)

i == j would return false (3.25==5.6)

9

RELATIONAL OPERATORS

• Another example is to compare variables using the char data type.

• In ASCII code, letters are stored in alphabetical order, so the value of

character ‘A’ is lower than value of character ‘B’.

• If uppercase and lowercase letters are compared, the computer will

check the sequence of uppercase then lowercase letters.

10

RELATIONAL OPERATORS

• The comparison of string data type follows the same rule as the char

data type.

• In the string data type, comparison is done character by character,

beginning with the first character. The comparison continues until either

a mismatch is found, or all the characters are found to be equal.

• If two strings of different lengths are compared, and the result of the

comparison is equal to the last character of the shorter string, the shorter

string is evaluated as less than the longer string.

11

RELATIONAL OPERATORS

12

LOGICAL OPERATORS

• In order to evaluate a comparison between two logical expressions, we

can use the Logical Operators.

• Table 3.2 lists the logical operators and their descriptions, while Table

3.3 shows possible conditions for operand a and b.

13

THE HIERARCHY OF RELATIONAL
AND LOGICAL OPERATORS

• The table below shows the hierarchy of relational and logical operators,

from the highest to the lowest.

14

COMPOUND BOOLEAN EXPRESSION

• The combination of relational and logical operator will be evaluated

based on the hierarchy of execution similar to the arithmetic operators.

15

ONE-WAY SELECTION

• The if statement tests for a particular condition (expressed as a Boolean

expression) and only executes the following statement(s) if the condition

is true.

16

ONE-WAY SELECTION

• If a sequence of statements are to be executed, this can be done by making a

compound statement or block by enclosing the group of statements in

braces.

17

TWO-WAY SELECTION
• A two-way selection will check a Boolean expression, and if the result of the Boolean

expression is true, it will display the statement for the true condition.

• Otherwise, it will display the statement for the false condition. Compare two selections which

are written in a statement of the form:

18

TWO-WAY SELECTION

• If a sequence of statements is to be executed, this is done by making a

compound statement by using braces to enclose the sequence:

19

MULTIPLE SELECTION

• Multiple selections are selections that compare more than two selections. This

type of selection will executed for true conditions.

• The program will check the Boolean expressions in sequential order.

• The syntax for multiple selection is as follows:

20

MULTIPLE SELECTION

21

DECISION CONTROL STRUCTURE

• Until now, we have learnt how to write Boolean expressions using relational

and logical operators.

• Additionally, to write the instructions to enable the computer to make a

decision, we need to use the if statement or switch statement method to

accomplish the task.

• The if statement is a method that is commonly used to write conditional

statements in programming language. There are four ways to write conditions

using if statements—one-way, two-way, multiple and nested statement.

• The switch statement is one of the alternatives to the if statement. Normally,

we use the switch statement to replace the if statement if the condition does

not involve relational or logical operators.

22

IF STATEMENT

23

IF VS SWITCH STATEMENT

If statement Switch statement

Valid for int, double , float ,

char and string

Valid for int and char only

Can use for range
For example
if (marks>=50 && marks<=100)

Cannot used for range

Using else for last option default for last option

24

SWITCH STATEMENT

• The switch statement is valid for integer numbers and single characters

only.

• The syntax for the switch statement is as follows.

25

SWITCH STATEMENT

• The value of the variable given into the switch is compared to the value

following each of the cases, and when one value matches the value of the

variable, the computer continues executing the program from that point.

• The break is used to break out of the case statements. If the value for case

1 is not a match, the program will check the next case value until it finds a

matching value.

• The n value means we can have as many cases as we want in a program.

• The default keywords are optional—it means the value does not equal the

values following any of the cases—it is similar to the else in the if statement.

26

SWITCH STATEMENT

• For more than one option in

every case (example: capital and

small letters), the following

example shows how the code

can be written.

27

SWITCH STATEMENT
• The break statement causes the program to proceed to the first statement after the switch

structure.

• Note that the switch control structure is different to the others in that braces are not required

around multiple statements.

• What will happen if you do not put the

break statement in every case?

28

MULTI-WAY SELECTION (NESTED)

• Nested selections will occur when there are two conditions and we

have to fulfil the first condition before we continue to the next condition.

• We can say that a nested statement is an if statement which is written

inside another if statement.

• Usually, we must write in indentation style to make the multiple selection

functionality much clearer.

• Nested selection can also be applied using the switch statement.

29

MULTI-WAY SELECTION (NESTED)

• The syntax for nested selection is as follows:

30

MULTI-WAY SELECTION (NESTED)

Gender Waist Status

Male <37 Low Risk

<40 Moderate Risk

>40 High Risk

Female <31.5 Low Risk

<35 Moderate Risk

>35 High Risk

31

MULTI-WAY SELECTION (NESTED)

inside if - waist

outside if - gender

32

CONCLUSION

• The real intelligence of a computer comes from its ability to make

decisions.

• The computer makes a decision based on Boolean expressions. The

value of a Boolean expression is 1 or non-zero number (true) or 0 (false).

• Relational operators and logical operators are used in Boolean

expressions to make decisions.

• There are two methods used to give instruction to computers to make

decisions - if statement and switch statement.

• There are three types of if statement—one way, two way and multiple

way.

• Compound statement is a list of statements located between a pair of

braces in an if statement.

33

CONCLUSION

• Switch statement is used when the value in the cases are

integers and single characters only.

• Break statement is used for every case to stop cases when a

match has been found in a switch statement.

• Nested selection is selection within selection. It is used when we

have multiple conditions, when the first condition yields true, then

it will check another condition to produce the result.

34

EXERCISE

35

EXERCISE 1

• Write an if statement which receives monthSalary from the user.

The program will display the job based on the following table.

Salary Job

1000-2000 Clerk

2001-4000 Executive

4001-8000 Manager

36

EXERCISE 1 - ANSWER

if (monthSalary >1000 && monthSalary<=2000)

cout << “\n Clerk”;

else if (monthSalary >2000 && monthSalary<=4000)

cout << “\n Executive”;

else if (monthSalary >4000 && monthSalary<=8000)

cout << “\n Manager”;

else

cout << “\n Out of range”;

37

EXERCISE 2

• What is the output of following program.

{

int number = 13;

if (number < 10)

cout<<number<<" is lesser than 10."<<endl;

else //

cout<<number<<" is greater than 10."<<endl;

cout<<"close."<<endl;

return 0;

}

38

EXERCISE 2 - ANSWER

• What is the output of following program.

{

int number = 13;

if (number < 10) //FALSE

cout<<number<<" is lesser than 10."<<endl;

else //TRUE

cout<<number<<" is greater than 10."<<endl;

cout<<"close."<<endl;

return 0;

}

OUTPUT

13 is greater than 10.

close.

39

EXERCISE 3 –NESTED IF / SWITCH

• Trace the output for the given input samples:

cin>>a;

if (a>0)

switch(a){

case 1: a=a+3;

case 3: a++;

break;

case 6: a=a+6;

case 8: a=a*8;

break;

default: a--;

}

else

a= a+2;

cout<<a;

Input (a) Output

6

0

2

1

40

EXERCISE 3 –-ANSWER

• Trace the output for the given input samples:

cin>>a;

if (a>0)

switch(a)

{

case 1: a=a+3;

case 3: a++;

break;

case 6: a=a+6;

case 8: a=a*8;

break;

default: a--;

}

else

a= a+2;

cout<<a;

Input (a) Output

6 96

0 2

2 1

1 5

41

EXERCISE 4

• Write C++ program segment to accomplish the following task:

i. Prompt user to enter only one character. The character are as

follows {A,a,B,b}. Then display whether it is uppercase or

lowercase letter by using switch..case statement. If the user

enters incorrect character, display the sentence “ incorrect input”.

42

EXERCISE 4

char letter;

cout<<“please enter a character”;

cin>>letter

switch (letter)

{

case ‘A’:

cout<<“Uppercase letter”;

break;

case ‘a’:

cout<<“Lowercase letter”;

break;

case ‘B’:

cout<<“Uppercase letter”;

break;

case ‘b’:

cout<<“Lowercase letter”;

break;

default:

cout<<“Incorrect Input”;

break;

}

COMBINE SEQUENTIAL (TOPIC 2) AND SELECTION (TOPIC 3)
IN ONE PROGRAM

Exercise 1 [Sequence + Selection]

Calculate a student Body Mass Index (BMI) and identify
their weight status based on the result.

Step by Step

SEQUENCE STRUCTURE

1. Calculate bmi first – ask user to input weight (kg) and height (m)

2. Identify formula

3. The bmi result OUTPUT

SELECTION STRUCTURE

1. From the bmi result – use if statement to make decision

2. Create 4 conditions representing each status

3. Add else if possible

SEQUENCE STRUCTURE SELECTION STRUCTURE

Exercise 2 [Selection+ Sequence]

Create a program to calculate total ticket price to be
paid, user need to choose rate of walk in or online and
enter number of adult, child and senior citizen.

Step by Step

INPUT STATEMENTS

1. Ask user to select type of rate – walk in or online

2. In order to make it easier – you can put code for type of rate such as
(A) for walk in and (B) for online , (1) for walk in and (2) for online

3. Ask user to enter how many adult, child and senior citizen to
purchase ticket.

Step by Step

SELECTION STRUCTURE - SELECTION

4. Create 2 conditions for type of rate - walk in (1) or online (2)

5. For each rate – assign rate for adult, child and senior citizen.

SEQUENCE STRUCTURE - CALCULATE

6. Calculate total price for each category and total it all to get total fee.

DECLARE VARIABLE

INPUT STATEMENTS

CHECK CONDITION USING IF FOR DATA TYPE INTEGER

Common Error By STUDENT

Example
adultRate=RM138.00;

ALTERNATIVE IF CHECK CONDITION USING IF FOR TYPERATE CATEGORY CHAR

Common Error By STUDENT

Example
if (typeRate==A || typerate==a);

CALCULATE TOTAL PRICE

CALCULATE TOTAL PRICE – MAKE IT BETTER OUTPUT

	Introduction
	Slide 1: Csc 128
	Slide 2: Course outline

	Boolean Expression
	Slide 3: Boolean Expression
	Slide 4: Relational Operators
	Slide 5: Relational Operators
	Slide 6: Relational Operators
	Slide 7: Relational Operators
	Slide 8: Relational Operators
	Slide 9: Relational Operators
	Slide 10: Relational Operators
	Slide 11: Relational Operators
	Slide 12: logical Operators
	Slide 13: The Hierarchy of Relational and Logical Operators
	Slide 14: Compound Boolean Expression

	IF STATEMENT
	Slide 15: ONE-WAY SELECTION
	Slide 16: One-way Selection
	Slide 17: TWO-way Selection
	Slide 18: TWO-way Selection
	Slide 19: MULTIPLE Selection
	Slide 20: MULTIPLE Selection
	Slide 21: Decision Control Structure
	Slide 22: If Statement

	Switch Statement
	Slide 23: If vs Switch StatemenT
	Slide 24: Switch StatemenT
	Slide 25: Switch StatemenT
	Slide 26: Switch StatemenT
	Slide 27: Switch StatemenT

	Nested IF
	Slide 28: Multi-way Selection (Nested)
	Slide 29: Multi-way Selection (Nested)
	Slide 30: Multi-way Selection (Nested)
	Slide 31: Multi-way Selection (Nested)

	Conclusion
	Slide 32: Conclusion
	Slide 33: Conclusion

	Exercise
	Slide 34: exercise
	Slide 35: Exercise 1
	Slide 36: Exercise 1 - answer
	Slide 37: Exercise 2
	Slide 38: Exercise 2 - ANSWER
	Slide 39: Exercise 3 – nested if / switch
	Slide 40: Exercise 3 –-answer
	Slide 41: Exercise 4
	Slide 42: Exercise 4
	Slide 43
	Slide 44: Exercise 1 [Sequence + Selection]
	Slide 45: Step by Step
	Slide 46
	Slide 47
	Slide 48: Exercise 2 [Selection+ Sequence]
	Slide 49: Step by Step
	Slide 50: Step by Step
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

